Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 128962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145691

RESUMO

Platelet-rich plasma (PRP) contains a variety of growth factors (GFs) and has been used in the treatment of a variety of diseases, including skin lesions. In particular, PRP with low immunogenicity will be more widely used. However, the explosive release of GFs limits its further application. In order to achieve controlled release of GFs, a multifunctional and reactive oxygen species (ROS)/pH dual responsive hydrogel was developed to load PRP derived from human cord blood for the treatment of skin wound healing. Based on the hydrogen bond and Schiff base interaction, carboxymethyl chitosan (CMCS), oxidized dextran (Odex) and oligomeric procyanidins (OPC) were crosslinked to form CMCS/Odex/OPC/PRP hydrogel with good injectability, self-healing, adhesion, ROS scavenging, antibacterial activity, controlled and sustained release of GFs. In vitro cell experiments suggested that this hydrogel possessed excellent biocompatibility and could promote the proliferation and migration of L929. In vivo healing of full-layer skin wounds further indicated that the prepared hydrogel could regulate inflammation and promote epithelialization, collagen deposition, and angiogenesis. In summary, this present study demonstrates that CMCS/Odex/OPC/PRP hydrogel may serve as a promising multifunctional dressing for skin wound healing.


Assuntos
Quitosana , Plasma Rico em Plaquetas , Humanos , Hidrogéis/química , Quitosana/química , Preparações de Ação Retardada , Espécies Reativas de Oxigênio , Cicatrização , Antibacterianos/análise , Peptídeos e Proteínas de Sinalização Intercelular , Plasma Rico em Plaquetas/química , Concentração de Íons de Hidrogênio
2.
J Mater Chem B ; 11(46): 11135-11149, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964663

RESUMO

Most hydrogel dressings are designed for skin wounds in flat areas, and few are focused on the joint skin regions which undergo frequent movement. The mismatch of mechanical properties and poor fit between a hydrogel dressing and a wound in joint skin results in hydrogel shedding, bacterial infection and delayed healing. Therefore, it is of great significance to design and prepare a multifunctional hydrogel with high tensile and tissue-adhesive strength as well as other therapeutic effects for the treatment of joint skin wounds. In this work, a multifunctional hydrogel was reasonably prepared by simply mixing polyvinyl alcohol (PVA), borax, tannic acid (TA) and iron(III) chloride in certain proportions, which was further used to treat the skin wounds at the joint of the hind limb. Acting as the physical crosslinkers, borax and TA dynamically bond with PVA and provide the resulting hydrogel with strong tensile, fast shape-adaptive and self-healing properties. The photothermal bacteriostatic activity of the hydrogel is attributed to the formation of a metallic polyphenol network (MPN) between ferric ions and TA. In addition, the hydrogel exhibits high levels of adhesion, hemostatic performance, antioxidant abilities, and biocompatibility, and shows great potential to promote joint skin wound healing.


Assuntos
Adesivos , Hidrogéis , Adesivos/farmacologia , Hidrogéis/farmacologia , Compostos Férricos , Bandagens , Ferro
4.
Int J Biol Macromol ; 253(Pt 4): 126854, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729986

RESUMO

Melanoma excision surgery is usually accompanied by neoplasm residual, tissue defect, and bacterial infection, resulting in high tumor recurrence and chronic wound. Nanocomposite hydrogels can satisfy the twin requirements of avoiding tumor recurrence and skin wound healing following skin melanoma surgery due to their photothermal anti-tumor and anti-bacterial activities. In this study, carboxymethyl chitosan, oxidized fucoidan and polyphenol-metal nanoparticle (PMN) of tannic acid capped gold nanoparticles were used to fabricate multifunctional nanocomposite hydrogels through Schiff base reaction. The prepared hydrogel demonstrated outstanding photothermal effect, and the controlled high temperature will rapidly kill melanoma cells as well as bacteria within 10 min. Good injectability, self-healing and adhesion combined with high reactive oxygen species (ROS) scavenging capacity, hemostasis and biocompatibility made this hydrogel platform perfect for the postoperative treatment of melanoma and promoting wound healing. With the assistance of NIR irradiance, hydrogel can inhibit tumor tissue proliferation and promote tumor cell apoptosis, thereby helping to prevent melanoma recurrence after surgical removal of tumors. Simultaneously, the irradiance heat and polyphenol component kill bacteria on the wound surface, eliminate ROS, inhibit inflammatory responses, and promote angiogenesis, collagen deposition, and skin regeneration, all of which help to speed up wound healing.


Assuntos
Quitosana , Melanoma , Nanopartículas Metálicas , Humanos , Polifenóis/farmacologia , Hidrogéis/farmacologia , Quitosana/farmacologia , Ouro , Nanogéis , Recidiva Local de Neoplasia , Espécies Reativas de Oxigênio , Melanoma/terapia , Antibacterianos
6.
Acta Biomater ; 166: 224-240, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37207743

RESUMO

Bacterial infection in the most mobile area usually leads to delayed healing and functional restriction, which has been a long-term challenge in clinic. Developing hydrogel-based dressings with mechanical flexibly, high adhesive and anti-bacterial properties, will contribute to the healing and therapeutic effects especially for this typical skin wound. In this work, composite hydrogel named PBOF through multi-reversible bonds between polyvinyl alcohol, borax, oligomeric procyanidin and ferric ion demonstrated a 100 times ultra-stretch ability, 24 kPa of highly tissue-adhesive, rapid shape-adaptability within 2 min and self-healing feature within 40 s, was designed as the multifunctional wound dressing for the Staphylococcus aureus-infected skin wound in the mice nape model. Besides, this hydrogel dressing could be easily removed on-demand within 10 min by water. The rapid disassembly of this hydrogel is related to the formation of hydrogen bonds between polyvinyl alcohol and water. Moreover, the multifunctional properties of this hydrogel include strong anti-oxidative, anti-bacteria and hemostasis derived from oligomeric procyanidin and photothermal effect of ferric ion/polyphenol chelate. The killing ratio of the hydrogel on Staphylococcus aureus in infected skin wound reached 90.6% when exposed to 808 nm irradiation for 10 min. Simultaneously, reduced oxidative stress, suppressed inflammation, and promoted angiogenesis all together accelerated wound healing. Therefore, this well-designed multifunctional PBOF hydrogel holds great promise as skin wound dressing especially in the high mobile regions of the body. STATEMENT OF SIGNIFICANCE: An ultra-stretchable, highly tissue-adhesive, and rapidly shape-adaptive, self-healing and on-demand removable hydrogel based on multi-reversible bonds among polyvinyl alcohol, borax, oligomeric procyanidin and ferric ion is designed as dressing material for infected wound healing in the movable nape. The rapid on-demand removal of the hydrogel relates to the formation of hydrogen bonds between polyvinyl alcohol and water. This hydrogel dressing shows strong antioxidant capacity, rapid hemostasis and photothermal antibacterial ability. This is derived from oligomeric procyanidin and thephotothermal effect of ferric ion/polyphenol chelate, which eliminates bacterial infection, reduces oxidative stress, regulates inflammation, promotes angiogenesis, and finally accelerates the infected wound healing in movable part.


Assuntos
Proantocianidinas , Infecções Estafilocócicas , Adesivos Teciduais , Animais , Camundongos , Hidrogéis/farmacologia , Proantocianidinas/farmacologia , Álcool de Polivinil , Cicatrização , Antibacterianos/farmacologia , Bandagens
7.
Int J Biol Macromol ; 226: 870-884, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36526064

RESUMO

Bacterial infection and subsequent reactive oxygen species (ROS) damage are major factors that delay wound healing in infected skin. Recently, photothermal therapy (PTT), as a new antibacterial method, has shown great advantages in the treatment of infected skin wound. Antibacterial and antioxidant hydrogels can reduce bacterial colonization and infection, scavenge ROS, relieve inflammation, and accelerate wound healing. In this study, an enzyme-crosslinked hyaluronic acid-tyramine (HT) hydrogel loaded with antioxidant and photothermal silver nanoparticles (AgNPs), named HTA, was developed as functional wound dressing to promote the infected skin wound healing. Natural antioxidant tannic acids (TA) were used as both reducing and stabilizing agents to facilely synthesize the silver nanoparticles capped with TA (AgNPs@TA). The incorporation of AgNPs@TA significantly enhanced the antioxidant, antibacterial, photothermal antibacterial, adhesive, and hemostatic abilities of the resulted HTA hydrogel. Besides, HTA hydrogel has rapid gelation, well injection and biocompatibility. In vivo results on the Staphylococcus aureus and Escherichia coli co-infected mouse skin wound model showed that HTA0.4 (containing 0.4 mg/mL AgNPs@TA) hydrogel combined with near infrared ray radiation highly alleviated inflammation, promoted angiogenesis, and accelerated the healing process. Therefore, this nanocomposite hydrogel wound dressing with antibacterial and antioxidant capabilities has great application potential in the treatment of infected skin wounds.


Assuntos
Ácido Hialurônico , Nanopartículas Metálicas , Animais , Camundongos , Antioxidantes/farmacologia , Nanogéis , Espécies Reativas de Oxigênio , Prata , Cicatrização , Inflamação , Antibacterianos/farmacologia , Modelos Animais de Doenças , Escherichia coli , Hidrogéis
8.
Acta Biomater ; 155: 199-217, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402298

RESUMO

Management of diabetic wound has long been a clinical challenge due to pathological microenvironment of excessive inflammation, persistent hyperglycemia, and biofilm infection caused by overdue reactive oxygen species (ROS) production and defective blood vessels. Herein, a multifunctional hydrogel with ROS scavenging and photothermal antibacterial activity based on oxidized dextran (Odex), gallic acid-grafted gelatin (GAG) and Ferric ion, named OGF, was developed for treatment of infected wound in a diabetic mouse. This hydrogel was double-crosslinked by the dynamically Schiff-base bonds formed between aldehyde groups in Odex and amino groups in GAG and the metal coordination bonds formed between Ferric ion and polyphenol groups or carboxyl groups in GAG, which endowed the resulted OGF hydrogel with well injectable, self-healing and adhesive properties. Due to the high-efficiency photothermal effect of Ferric ion/polyphenol chelate, this hydrogel killed Staphylococcus aureus and Escherichia coli rapidly and completely within 3.5 min under near-infrared light radiation. Furthermore, this composed hydrogel presented good antioxidation, hemostasis and biocompatibility. It also remarkably accelerated the complete re­epithelialization of Staphylococcus aureus­infected wound in diabetic mice within 18 days by eliminating infection, mitigating oxidative stress and inflammation, and facilitating angiogenesis. Therefore, the proposed multifunctional hydrogel exerts a great potential for translation in the clinical management of diabetic wounds. STATEMENT OF SIGNIFICANCE: High reactive oxygen species (ROS) levels and vascular defects in diabetic wounds can lead to excessive inflammation, persistent hyperglycemia, biofilm infection and other pathological microenvironments, which can further develop to the chronic wounds. In this study, we designed a multifunctional hydrogel with ROS-scavenging ability and photothermal antibacterial activity for the treatment of infected diabetic wound. As expected, this multifunctional hydrogel dressing highly accelerated the complete re­epithelialization of Staphylococcus aureus­infected wound in diabetic mouse by eliminating infection, mitigating oxidative stress and inflammation, as well as facilitating angiogenesis. This work provides a promising therapeutic strategy for infected diabetic wound by inhibition of oxidative stress and biofilm infection.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Animais , Camundongos , Espécies Reativas de Oxigênio , Hidrogéis/farmacologia , Cicatrização , Antibacterianos/farmacologia , Escherichia coli
9.
Int J Biol Macromol ; 219: 844-863, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961554

RESUMO

Oxidative stress caused by the overexpression of reactive oxygen species (ROS) plays an important role in the pathogenesis of traumatic brain injury (TBI). Accumulation of ROS can lead to cell death, neurodegeneration, and neurological deficit. Therefore, the design and application of functional materials with ROS scavenging ability is of great significance for neural repair. Herein, an injectable and antioxidant hydrogel was developed for TBI treatment based on the Schiff base reaction of gallic acid-conjugated gelatin (GGA) and oxidized dextran (Odex). The resulting GGA/Odex hydrogel could effectively scavenge DPPH and ABTS radicals, as well as protect cells from the oxidative damage in vitro. Moreover, GGA/Odex hydrogel possessed well biocompatible features. In a moderate TBI mouse model, in situ implantation of GGA6Odex hydrogel efficiently facilitated neurogenesis and promoted the motor, learning and memory abilities. Also, this composite hydrogel suppressed oxidative stress and inflammation via the activation of Nrf2/HO-1 pathway and the regulating of inflammatory factors secretion and macrophage/microglia polarization. Therefore, this injectable and ROS-scavenging GGA6Odex hydrogel is a promising biomaterial for tissue regenerative medicine, including TBI and other tissue repair relevant to raised ROS circumstance.


Assuntos
Lesões Encefálicas Traumáticas , Hidrogéis , Animais , Antioxidantes , Materiais Biocompatíveis , Lesões Encefálicas Traumáticas/tratamento farmacológico , Dextranos , Ácido Gálico , Gelatina , Hidrogéis/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff/farmacologia
10.
RSC Adv ; 12(32): 20897-20905, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35919176

RESUMO

Hydrogel-based antibacterial materials with multi-functions are of great significance for healthcare. Herein, a facile and one-step method was developed to fabricate an injectable hydrogel (named CMCS/OPC hydrogel) based on carboxymethyl chitosan (CMCS) and oligomeric procyanidin (OPC). In this hydrogel system, OPC serves as the dynamic crosslinker to bridge CMCS macromolecules mainly through dynamical hydrogen bonds, which endows this hydrogel with excellent injectable, self-healing, and adhesive abilities. In addition, due to the inherent antibacterial properties of CMCS and OPC, this hydrogel shows excellent antibacterial activity. Therefore, the well-designed CMCS/OPC hydrogel has great prospects as an antibacterial material in the biomedical field.

11.
Biomater Sci ; 10(19): 5620-5633, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35989642

RESUMO

Multifunctional and smart hydrogel-based hemostatic materials are of great significance in the field of medical care. In this paper, a facile method for the preparation of self-healing, adhesive and on-demand removable PBO hydrogels was established with a simple mixture of polyvinyl alcohol (PVA), borax and oligomeric procyanidin (OPC). In this hydrogel system, borax and OPC were used as dynamic crosslinkers to connect the PVA macromolecules through reversible borate ester bonds and hydrogen bonds, resulting in hydrogels that possess good self-healing and adhesive abilities. Furthermore, the PBO hydrogel displayed excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, thanks to the adhesive property of the hydrogel and the inherent hemostatic activity of OPC, this hydrogel showed rapid hemostasis performance as concluded from the in vivo experiments of mouse liver incision, tail amputation and femoral artery models. Benefitting from the fast degradation in water, this hydrogel could be easily removed on-demand within 10 min. Therefore, this well-designed PBO hydrogel offers an important prospect as a rapid hemostatic dressing.


Assuntos
Anti-Infecciosos , Hemostáticos , Proantocianidinas , Adesivos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Boratos , Escherichia coli , Ésteres , Hemostasia , Hemostáticos/farmacologia , Hidrogéis/química , Camundongos , Álcool de Polivinil/química , Água , Cicatrização
12.
ACS Appl Mater Interfaces ; 14(30): 34455-34469, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857973

RESUMO

Engineered wound dressing materials with excellent injectability, self-healing ability, tissue-adhesiveness, especially the ones possessing potential therapeutic effects have great practical significance in healthcare. Herein, an injectable quaternary ammonium chitosan (QCS)/tannic acid (TA) hydrogel based on QCS and TA was designed and fabricated by facile mixing of the two ingredients under physiological conditions. In this system, hydrogels were mainly cross-linked by dynamic ionic bonds and hydrogen bonds between QCS and TA, which endows the hydrogel with excellent injectable, self-healing, and adhesive properties. Benefitting from the inherent antioxidative, antibacterial, and hemostatic abilities of TA and QCS, this hydrogel showed superior reactive oxygen species scavenging activity, broad-spectrum antibacterial ability, as well as rapid hemostatic capability. Moreover, the QCS/TA2.5 hydrogel (containing 2.5% TA) exhibited excellent biocompatibility. The in vivo experiments also showed that QCS/TA2.5 hydrogel dressing not only rapidly stopped the bleeding of arterial and deep incompressible wounds in mouse tail amputation, femoral artery hemorrhage, and liver incision models but also significantly accelerated wound healing in a full-thickness skin wound model. For the great potentials listed above, this multifunctional QCS/TA2.5 hydrogel offers a promising network as a dressing material for both rapid hemostasis and skin wound repair.


Assuntos
Quitosana , Hemostáticos , Adesivos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Quitosana/farmacologia , Hemostasia , Hemostáticos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Taninos/farmacologia , Cicatrização/fisiologia
13.
Mater Today Bio ; 15: 100278, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35601897

RESUMO

The efficacy of neural repair and regeneration strategies for traumatic brain injury (TBI) treatment is greatly hampered by the harsh brain lesion microenvironment including oxidative stress and hyper-inflammatory response. Functionalized hydrogel with the capability of oxidative stress suppression and neuroinflammation inhibition will greatly contribute to the repairment of TBI. Herein, antioxidant gallic acid-grafted hyaluronic acid (HGA) was combined with hyaluronic acid-tyramine (HT) polymer to develop an injectable hydrogel by dual-enzymatically crosslinking method. The resulting HT/HGA hydrogel is biocompatible and possesses effective scavenging activity against DPPH and hydroxyl radicals. Meanwhile, this hydrogel improved cell viability and reduced intracellular reactive oxygen species (ROS) production under H2O2 insult. The in vivo study showed that in situ injection of HT/HGA hydrogel significantly reduced malondialdehyde (MDA) production and increased glutathione (GSH) expression in lesion area after treatment for 3 or 21 days, which might be associated with the activation of Nrf2/HO-1 pathway. Furthermore, this hydrogel promoted the microglia polarization to M2 (Arg1) phenotype, it also decreased the level of proinflammatory factors including TNF-α and IL-6 and increased anti-inflammatory factor expression of IL-4. Finally, blood-brain barrier (BBB) was protected, neurogenesis in hippocampus was promoted, and the motor, learning and memory ability was enhanced. Therefore, this injectable, biocompatible, and antioxidant hydrogel exhibits a huge potential for treating TBI and allows us to recognize the great value of this novel biomaterial for remodeling brain structure and function.

14.
Int J Biol Macromol ; 210: 218-232, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537589

RESUMO

Infected wound healing has always been a challenge in clinic. Effective and economic wound dressings with combined antibacterial activity and pro-healing function are highly desirable, especially in the context of infected wounds. An obvious advantage of antibacterial wound dressing is to avoid the overuse of antibiotics and the occurrence of drug resistance. Herein, an injectable hyaluronic acid hydrogel with antioxidative and photothermal antibacterial activity as a functional dressing was prepared, characterized and evaluated in an experimental infected wound model. This hydrogel was developed by loading graphene oxide (GO) in a natural polymer network consisting of hyaluronic acid grafted with tyramine (HT) and gelatin grafted with gallic acid (GGA). The HT/GGA/GO hydrogels have a porous cross-linked network structure and demonstrate a good stability, biocompatibility, antioxidant, hemostatic and photothermal antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, in vivo studies have shown that HT1/GGA2/GO0.1 hydrogel dressing combined with photothermal therapy can effectively prevent early infection and accelerate wound healing. These results indicated this functionalized injectable hydrogel HT1/GGA2/GO0.1 has a great potential in wound dressing application.


Assuntos
Hidrogéis , Infecção dos Ferimentos , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Escherichia coli , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Hidrogéis/química , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
15.
Adv Healthc Mater ; 11(4): e2101808, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34787374

RESUMO

Multifunctional hydrogel as a sealant or wound dressing with high adhesiveness and excellent antibacterial activity is highly desirable in clinical applications. In this contribution, one-step synthetic hydrogel based on quaternized chitosan (QCS), tannic acid (TA), and ferric iron (Fe(III)) is developed for skin incision closure and Staphylococcus aureus (S. aureus)-infected wound healing. In this hydrogel system, the ionic bonds and hydrogen bonds between QCS and TA form the main backbone of hydrogel, the metal coordination bonds between TA and Fe(III) (catechol-Fe) endow hydrogel with excellent adhesiveness and (near-infrared light) NIR-responsive photothermal property, and these multiple dynamic physical crosslinks enable QCS/TA/Fe hydrogel with flexible self-healing ability and injectability. Moreover, QCS/TA/Fe hydrogel possesses superior antioxidant, anti-inflammatory, hemostasis, and biocompatibility. Also, it is safe for vital organs. The data from the mouse skin incision model and infected full-thickness skin wound model presented the high wound closure effectiveness and acceleration of the wound healing process by this multifunctional hydrogel, highlighting its great potential in wound management.


Assuntos
Quitosana , Hidrogéis , Animais , Antibacterianos/química , Quitosana/química , Quitosana/farmacologia , Compostos Férricos , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Staphylococcus aureus , Cicatrização
16.
Gels ; 7(4)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34842686

RESUMO

Hydrogels have gained a niche in the market as wound dressings due to their high water content and plasticity. However, traditional hydrogel wound dressings are difficult to fully adapt to irregular-shaped wound areas. Additionally, excessive reactive oxygen species (ROS) accumulated in the damaged area impede the wound healing process. Therefore, hydrogels with injectable and antioxidant properties offer promising qualities for wound healing, but their design and development remain challenges. In this study, HT/QGA (tyramine-grafted hyaluronic acid/gallic acid-grafted quaternized chitosan) hydrogels with injectable and antioxidant properties were prepared and characterized. This hydrogel exhibited excellent injectability, favorable antioxidant activity, and good biocompatibility. Moreover, we evaluated the therapeutic effect of HT/QGA hydrogel in a full-thickness skin injury model. These results suggested that HT/QGA hydrogel may offer a great potential application in wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...